Dynamics เพลาร้าวโรเตอร์ (1)

วันที่เผยแพร่:2021-08-10

Introduction

ทิศทางที่สำคัญในการสั่นสะเทือนการวินิจฉัยของเครื่องยนต์กังหันก๊าซการบินและ turbomachines คือ diagnostics ผ่านการสร้างแบบจำลอง การสร้างแบบจำลองให้โอกาสในการเชื่อมโยงการปรากฏตัวของบางชนิดของข้อบกพร่องเครื่องที่มีสัญญาณของการแสดงตนในสัญญาณการสั่นสะเทือนได้ หนึ่งในข้อบกพร่องดังกล่าวเป็นลักษณะแตกในเพลาของเครื่องยนต์การบินและ turbomachines ซึ่งเป็น unallowable ดังนั้นงานที่สำคัญที่สุดของระบบการวินิจฉัยคือการตรวจสอบรอยแตกในเวลาและการคาดการณ์ความคืบหน้า

Appearance แตกในผลโรเตอร์ในการลดความฝืดในท้องถิ่น มูลค่าของการสูญเสียความฝืดขึ้นอยู่กับลักษณะทางเรขาคณิตของรอยแตก ถ้าโหลดแบบคงที่ดังกล่าวเป็นแรงน้ำหนักถูกนำไปใช้แตกเปิดและปิดในขณะที่ใบพัดหมุน เป็นผลให้ตึงเพลาเปลี่ยนแปลงต่อวงจร แตกในการนำไปสู่ระบบใบพัดที่ following การเปลี่ยนแปลงในการสั่นสัญญาณ [1]:

·increase ในความกว้างของ 1x ฮาร์โมนิของความเร็วในการหมุนเนื่องจากการเจริญเติบโต การโก่งคงเกิดจากการลดลงของความแข็ง

·appearance องค์ประกอบ 2x ของความเร็วในการหมุนเนื่องจากความฝืดโรเตอร์ไม่สมมาตร

·appearance องค์ประกอบ3хของความเร็วในการหมุนเนื่องจากวัฏจักรการเปิดและปิดของรอยแตก

งานหลักของแบบจำลองทางคณิตศาสตร์คือคำอธิบายของมูลค่าและกฎหมายของการเปลี่ยนแปลงในท้องถิ่นตึงใน

การสถาน where รอยแตกที่เกิดขึ้นพิจารณาเป็นปัจจัยหลายอย่างที่เป็นไปได้

มีหลายวิธีที่จะแตกจำลอง ในกรณีที่แตกง่ายที่สุดคือการจำลองการลดลงของความแข็งรัศมีของเพลาทั้ง [2,3,4] ในกรณีอื่น ๆ ส่วนเพลา where รอยแตกที่เกิดขึ้นเป็น replace งโดยองค์ประกอบคานเทียบเท่า ค่าสัมประสิทธิ์ของเมทริกซ์ความแข็งขององค์ประกอบดังกล่าวจะคำนวณการแตกเข้าบัญชีและการเปลี่ยนแปลงต่อวงจร ในการทำงาน [5] การคำนวณของเมทริกซ์ความแข็งขององค์ประกอบลำแสงที่มีรอยแตกอยู่บนพื้นฐานของการใช้งานในช่วงเวลาที่แรงเฉื่อยของรอยแตกส่วนคานพิจารณา ในการทำงาน [6] เมทริกซ์ความแข็งขององค์ประกอบดังกล่าวจะคำนวณบนพื้นฐานของสมการของกลศาสตร์ของการทำลายวัตถุที่เป็นของแข็งฯ แตกอาจจะจำลองโดยการเชื่อมโยงความยืดหยุ่นในการเชื่อมต่อส่วนขอบเขตของเพลาในสถานที่ของทำเลที่ตั้งและการให้ความมั่นคงช่วงเวลาที่แตก [7,8]

เปลี่ยนในแตกตึงขึ้นอยู่กับการเปิดและปิดในขณะที่ใบพัดหมุนอาจจะอธิบายทางคณิตศาสตร์ในรูปแบบที่แตกต่างกัน ในกรณีที่ง่ายมันอาจจะคิดว่ารอยแตกมีเพียงสองตำแหน่ง: ทั้งหมด opened หรือสมบูรณ์ปิดและฟังก์ชั่นขั้นตอนที่อาจนำมาใช้เพื่ออธิบายการเปลี่ยนแปลงความแข็งแรงทางคณิตศาสตร์ [4].

Work [3] อธิบายรูปแบบการแพร่กระจายมากที่สุดของการเปลี่ยนแปลงความแข็ง หนึ่งในนั้นคือสม Gasch เปลี่ยน

in ตึงจะเกิดขึ้นทั้งนี้ขึ้นอยู่กับมุมระหว่างขั้นตอนของการบังคับแบบคงที่และขั้นตอนการแตกและอธิบายโดย 17 เสียงดนตรีของชุดฟูริเย บทความเดียวกันให้ Maes&เดวีส์สม where ตึงเปลี่ยนแปลงขึ้นอยู่กับมุมตามกฎหมายโคไซน์ ในรูปแบบยางตึงเปลี่ยนแปลงตามกฎหมายโคไซน์ในระดับความลึกแตกญาติ.

บทความพัฒนารูปแบบแตกบนพื้นฐานของ \\ วิธีnexisted และยังนำเสนอวิธีการที่ ที่ให้โอกาสในการสัญญาณไฮไลท์ที่ใช้ในการตรวจสอบสภาพของสำหรับใบพัดที่แน่นอน

ขั้นตอนวิธีการรวมอยู่ในโปรแกรม Dynamics R4 ซอฟแวร์ [9] ซึ่งหมายถึงเฉพาะ

system กับการคำนวณของพฤติกรรมแบบไดนามิกของระบบใบพัดที่ซับซ้อน

รุ่นCrack

Within คิดจำลองที่ยอมรับ crack ในรูปแบบเพลาจะถูกแทนที่ด้วยการเชื่อมโยงยืดหยุ่นหารเพลาออกเป็นสองส่วนและอธิบายโดยเมทริกซ์ตึงกับตัวแปร ค่าสัมประสิทธิ์ ถ้าไม่มีร้าวสภาพความเครียดการทำงานร่วมกันระหว่างส่วนของชิ้นส่วนเพลาสามารถทำได้เพื่อให้ทุก displacements ซึ่งกันและกันเป็นสิ่งต้องห้าม เราแนะนำหมุนระบบพิกัดηOεนอนอยู่ในพื้นที่รอยแตกรูปที่ 1 มันเกิดขึ้นพร้อมกับต้นกำเนิดที่มาของการแก้ไขประสานงาน XYZ ระบบ เพลารันสองเคลื่อนไหว - การหมุนที่เหมาะสมและ precession รอบแกน Z เมื่ออธิบายแตกเราพิจารณาเฉพาะการหมุนรอบηεและแกน displacements ที่องศาเสรีภาพอื่น ๆ จะถูกทอดทิ้ง. 

图片1.png

    

Figure 1. แตกส่วน

 Flexibility เมทริกซ์ของการเชื่อมโยงการจำลอง crack ในหมุนระบบพิกัดอาจจะเขียนเป็น  following:

图片2.png

 wher &101;# Q J=a- ความแตกต่างในขั้นตอน- J มุมการหมุนเพลา-  มุม precession;- \\ งะee (Q) และ\\ งะ hhQ) ตัวแปร-coefficients ของความยืดหยุ่นขณะ .

Flexibility ขึ้นอยู่กับมุม  Q เนื่องจากในขณะที่เพลาหมุนแตกเปิดและปิด เมทริกซ์ตึงจะได้รับโดยการผกผันของ[GR(Q)]matrix และศูนย์สัมประสิทธิ์ความยืดหยุ่นที่ นำเส้นทแยงมุมหลักในการ obtainment ของสัมประสิทธิ์ความฝืดไปอินฟินิตี้ เรา จำกัด ค่าสัมประสิทธิ์ความฝืดดังกล่าวโดย1е10n \\ นาโนเมตร; สมมติฐานนี้ไม่ส่งผลกระทบอย่างมีนัยสำคัญผลที่ได้คือเราได้รับ/

图片3.png

 Stiffness เมทริกซ์จะเปลี่ยนเป็นคงที่ระบบพิกัดใช้ สมการต่อไปนี้:   

图片4.png

wher

101;  [&#T]หมุนเมทริกซ์ (4), wher101;-C\\ พลเรือน (J=)S1sin (J=)

คูณ matrixes ในการติดต่อกับสมการ (3) เราได้รับ:.图片5.png

  

图片6.png


เราได้ดำเนินการเปลี่ยนแปลงบางอย่างที่ให้โอกาสที่จะส่งผ่านไปยังรายละเอียดที่เรียบง่ายของรอยแตก

\\ เมทริกซ์nstiffness และอัลกอริทึมของสัมประสิทธิ์ของ obtainment ในการติดต่อกับรุ่น Maes มัน  may สันนิษฐานได้ว่ามีความยืดหยุ่นรัศมีของลำแสงวงกลมที่มีการเปลี่ยนแปลงแตกจากต่ำไปค่าสูงสุดตามที่กฎหมายโคไซน์.   

图片7.png

wher

101;

\\ งะ 0 ความยืดหยุ่นของคานโดยไม่แตก (ค่าต่ำสุด)&#GCความยืดหยุ่นของคานกับเปิด-crack (ค่าสูงสุด).

เราแทนที่แตกโดยบานพับกับช่วงเวลาที่ตึง

   Kinit \\ นาโนเมตรH ลำแสงเงื่อนไขขอบเขตควรให้มัน\\ Definabilitynstatical ขณะที่มันแสดงให้เห็นในรูปที่ 2    

Figure 2 . เปลี่ยนร้าวโดยบานพับ图片8.png

จากนั้นความยืดหยุ่นรัศมีของส่วนไฮไลต์ของเพลากับเปิดรอยแตกจะได้รับเป็น


   

图片9.pngwher

101;

e

 หนุ่มโมดูลัส,  ฉัน&#ขณะความเฉื่อย diametral ของส่วนเพลาK-init-mh - ค่าสัมประสิทธิ์ของความฝืดช่วงเวลาของการเชื่อมโยงเทียบเท่าสอดคล้องกับการเปิดเต็มร้าว.  


   



ส่งข้อความของคุณไปยังผู้จัดจำหน่ายรายนี้

  • ไปยัง:
  • Shanghai LANZHU super alloy Material Co., Ltd.
  • *ข่าวสาร:
  • อีเมลของฉัน:
  • โทรศัพท์:
  • ชื่อของฉัน:
ระวัง:
ส่งจดหมายที่เป็นอันตรายถูกรายงานซ้ำ ๆ จะทำให้ผู้ใช้หยุดนิ่ง
ผู้จัดจำหน่ายรายนี้ติดต่อคุณภายใน 24 ชั่วโมง
ขณะนี้ไม่มีการสอบถามเกี่ยวกับผลิตภัณฑ์นี้
top